News

Meso Zeaxanthin - Macular Degeneration Lipofuscin & The Aging Retina

RETINAL AGING. The component of the retina which is essential for maintaining visual function and photoreceptor survival  is the Retinal Pigment Epithelium (RPE).(1)  The RPE provides the homeostasis of the retina, including phagocytosis, a process by which the shedding of the outer segments of photoreceptors is removed and properly disposed as waste products. It is critical that phagocytosis provide daily removal of the shedded segments to maintain vision.  Phagocytosis denote a highly active lysosomal activity in the RPE of the retina. Aging of retinal results in a degression of lysosomal activity and accumulation of waste material (Lipofuscin). (2) Furthermore, age related photooxidation of the cellular membrane of the retina further damages the RPE and retinal function.  

LIPOFUSCIN AND MACULAR DEGENERATION. Lipofuscin is generated through oxidative stress and a result of waste products. When the retina loses phagocytosis, there is photoreceptor degeneration.(1) Diminished phagocytosis results in increased lipofuscin accumulated in the RPE, which in turn negatively affects the RPE and photoreceptors. Lipofuscin levels also increase through oxidative stress in the retina. Accumulation of lipofuscin is an indicator of RPE atrophy and macular degeneration. As powerful antioxidants, lutein and zeaxanthin can reduce formation of lipofuscin. Zeaxanthin in particular can further help by supporting the phagocytosis removal of lipofuscin.(3,4)

The RPE contains the pigments melanin (in melanosomes) and lipofuscin. Melanin is an antioxidant pigment, whereas lipofucsin is the byproduct of waste material from photoreceptor removal and oxidative stress, which increases with dysfunction of phagocytosis. The accumulation of lipofuscin  reduces the protection of melanin and increases oxidative stress of the RPE.(2)  

While melanin is a powerful protector of the retina, aging affects the ability of melanin to protect the eye. Older melanosomes exposed to blue light, significantly inhibited phagocytosis - which accelerated degeneration of photoreceptors.. Therefore, the phototoxicity of melansomes increase with age. However, the antioxidant zeaxanthin has been shown to reduce the phototoxicity potential.(3)

ZEAXANTHIN HELPS PROTECTS AGAINST RETINAL DEGENERATION

(1) By reducing Phototoxicity / Photooxidation damage of retinal cellular membranes associated with aging.

(2) By supporting Phagocytosis.and the Maintenance of the RPE. 

Meso zeaxanthin is the most powerful version of zeaxanthin, and is found in the central macula.

 

 VISION VITALITY  (MESO ZEAXANTHIN)

 

REFERENCES:

(1) Valiente-Soriano F, et al. Tracing the retina to analyze the integrity and phagocytic capacity of the retinal pigment epithelium.Sci Rep. 2020.

(2) Bonilha V.. Age and disease-related structural changes in the retinal pigment epithelium. Clin. Ophthalmol. 2008 Jun

(3) Olchawa M, et al. The effect of aging and antioxidants on photoreactivity and phototoxicity of human melanosomes; an in vitro study. Pigment Cell Melanoma Res, 2020 Jul 23.

(4) Olchawa M, et al. Zeaxanthin and α-tocopherol reduce the inhibitory effects of photodynamic stress on phagocytosis by ARPE-19 cells. Free Radic Biol Med. 2015 Dec.

Prevention of Lipid Oxidative Damage and Anti-Inflammation - Lutein Zeaxanthin Mesozeaxanthin

Protective macular pigments consist of lutein, zeaxanthin and meso zeaxanthin which act as powerful lipid antioxidants as well as functioning as an anti-inflammatory in the retina. In both the retina and the brain, these pigments are readily absorbed into the cellular membranes and orient themselves perpendicular in the membrane which acts to stabilize the cellular membrane.(1) The cellular membrane is made from unsaturated fats, which are very susceptible to free radical induced oxidative damage by high energy short wave light (such as blue light). As a potent lipid antioxidants, lutein, zeaxanthin and meso zeaxanthin signifcantly boost protection of the cellular membrane, and thereby protecting cells of the retina cells and neurons in the brain.(2)

  • All three xanthophylls function as potent lipid anti-oxidants and demonstrate anti-inflammation in both the retina and brain.
  • Offers protective effect of lipid cellular membrane of retina and neuron cells.
  • Offers potential protective role in diabetic retinopathy.(3)
  • Serum levels of macular xanthophylls are significantly lower in diabetic retinopathy subjects.(4)
  • Meso zeaxanthin increases antioxidant protection in retina be enhancing density of macular pigment.
  • Meso zeaxanthin has been shown to be the strongest xanthophyll antioxidant.
  • Meso zeaxanthin is required to obtain maximum antioxidant effect in the retina.(6)
  • Meso zeaxanthin is also radioprotective. In research conducted with laboratory animals, meso zeaxanthin was shown to reduce radiation induced-damage in mice, including reduction in DNA damage. (7)

 

VISION VITALITY MAX  (Lutein | Zeaxanthin | Mesozeaxanthin)

 

    REFERENCES:

    (1) Subczynski WK, et al.  Location of macular xanthophylls in the most vulnerable regions of photoreceptor outer-segment membranes. Arch Biochem Biophys. 2010 Dec

    (2) Widomska J, et al. Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain? Foods. 2016 Mar.

    (3) Neelam K, et al. Putative protective role of lutein and zeaxanthin in diabetic retinopathy. Br J Opthalmol. 2017 May

    (4) Gong X, et al. Role of macular xanthophylls in prevention of common neovascular retinopathies: retinopathy of prematurity and diabetic retinopathy. Arch Biochem Biophys. 2015 Apr.

    (5) Orhan C, et al. Mesozeaxanthin Protects Retina from Oxidative Stress in a Rat Model.  J Ocul Pharmacol Ther. 2016 Nov.

    (6) Binxing Li, et al. Studies on the Singlet Oxygen Scavenging Mechanism of Human Macular Pigment.Arch Biochem Biophys, 2010 Dec.

    (7) Firdous AP, et al. Amelioration of radiation-induced damages in mice by carotenoid meso-zeaxanthin. Int J Radiat Biol. 2013 Mar