Excess body weight is associated with many health concerns, and is rapidly becoming the number one health problem worldwide. among the health risks are diabetes, cardiovascular disease, cancer and premature death. (1) Individuals of the obese classification are especially subject to deleterious health implications. Obesity results in:
Visceral Fat - Obesity results in increases of visceral fat. Visceral fat (also known as belly fat) is the fat that accumulates around organs in the abdominal cavity and is linked to serious diseases, including type 2 diabetes. metabolic syndrome and those affecting organ functioning. Significant levels of inflammatory proteins are generated by visceral fat. In fact, inflammation of the liver which precedes HDLF, is mediated by visceral fat inflammatory proteins.(2)
Nonalcoholic fatty liver disease (NAFLD) - Obesity is a significant risk factor in the development of NAFLD. Most noteworthy, is the excessive buildup of triglycerides in the liver which causes metabolic disturbances throughout the body. As a result, fatty acid metabolism becomes impaired, which may lead to fatty acid intermediates which causes insulin resistance and cardiovascular disease.
Adipose Tissue and Aging - White adipose tissue, associated with obesity, is the most affected tissue in aging. As the adipose tissue ages, there is a significant increase in oxidative stress and the generation of inflammatory proteins resulting in chronic low grade inflammation. In turn, this further damages tissue and accelerates aging. (6)
INGREDIENTS:
YELLOW LONGEVITY® (Berberine | Apigenin | Saffron)
VASCULAR VX™
CURCUMIN PXC™(Curcumin | Fisetin | Pterostilbene)
HYPER LONGEVITY™ (Ursolic Acid | Rosmarinic Acid)
REFERENCES:
(1) Unamuno Xm et al. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest. 2018 Sep
(2) Casagrande BP, et al. Hepatic inflammation precedes steatosis and is mediated by visceral fat accumulation. J Endocrinol. 2020 Mar 1
(3) Conceição G, et al. Fat Quality Matters: Distinct Proteomic Signatures Between Lean and Obese Cardiac Visceral Adipose Tissue Underlie its Differential Myocardial Impact. Cell Physiol Biochem. 2020 Apr 23
(4) Huang N, et al. Novel insight into perirenal adipose tissue: A neglected adipose depot linking cardiovascular and chronic kidney disease. World J Diabetes, 2020 Apr 15
(5) Sreedhar UL, et al. A Systematic Review of Intra-pancreatic Fat Deposition and Pancreatic Carcinogenesis. J Gastrointest Surg. 2019 Nov 20
(6) Yu Q, et al. Sample multiplexing for targeted pathway proteomics in aging mice. Proc Natl Acad Sci USA. 2020 Apr 24
(7) Mangge H, et al. Telomere shortening associates with elevated insulin and nuchal fat accumulation. Sci Rep. 2020 Apr 22
(8) Goldberg EL, et al. How Inflammation Blunts Innate Immunity in Aging. Interdiscip Top Gerontol Geiatr. 2020
(9) Conley SM, et al. Human Obesity Induces Dysfunction and Early Senescence in Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells. Front Cell Dev Biol. 2020 Mar 26
(10) Eckel-Mahan K, et al. Adipose Stromal Cell Expansion and Exhaustion: Mechanisms and Consequences. Cells 2020 Apr 2
(11) Wang Y, et al. Berberine inhibits free fatty acid and LPS-induced inflammation via modulating ER stress response in macrophages and hepatocytes. PLoS One. 2020 May 1
(12) Horvath C, et al. Feeding brown fat: dietary phytochemicals targeting non-shivering thermogenesis to control body weight. Proc Nutr Soc, 2020 Apr
(13) Wang C, et al. Berberine inhibits adipocyte differentiation, proliferation and adiposity through down-regulating galectin-3.
(14) Yu SJ, et al. Berberine alleviates insulin resistance by reducing peripheral branched-chain amino acids. Am J Physiol Endocrinol Metab. 2019 Jan
(15) Su T, et al. Apigenin inhibits STAT3/CD36 signaling axis and reduces visceral obesity. Pharmacol Res. 2020 Feb
(16) Jung UJ, et al. Apigenin Ameliorates Dyslipidemia, Hepatic Steatosis and Insulin Resistance by Modulating Metabolic and Transcriptional Profiles in the Liver of High-Fat Diet-Induced Obese Mice. Nutrients. 2016 May
(16) Yaribeygi H, et al. Antidiabetic potential of saffron and its active constituents. J Cell Physiol, 2019 Jun
(17) Mashmoul M, et al. Protective effects of saffron extract and crocin supplementation on fatty liver tissue of high-fat diet-induced obese rats. BMC Complement Altern Med. 2016 Oct
(18) Al-Saud NBS. Impact of curcumin treatment on diabetic albino rats. Saudi J Biol Sci. 2020 Feb;27
(19) Gaballah HH, et al, Mitigative effects of the bioactive flavonol fisetin on high-fat/high-sucrose induced nonalcoholic fatty liver disease in rats.
(20) Kim M, et al. Lemon Balm and Its Constituent, Rosmarinic Acid, Alleviate Liver Damage in an Animal Model of Nonalcoholic Steatohepatitis. Nutrients. 2020 Apr 22
(21) Rui Y, et al. Rosmarinic acid suppresses adipogenesis, lipolysis in 3T3-L1 adipocytes, lipopolysaccharide-stimulated tumor necrosis factor-α secretion in macrophages, and inflammatory mediators in 3T3-L1 adipocytes. Food Nutr Res. 2017 Jun
(22) Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016 Jul;
(23) Milton-Laskibar L, et al. Effects of resveratrol and its derivative pterostilbene on brown adipose tissue thermogenic activation and on white adipose tissue browning process. J Physiol Biochem. 2020 Mar 13
(24) Gomez-Zorita S, et al. Effects of Pterostilbene on Diabetes, Liver Steatosis and Serum Lipids. Curr Med Chem. 2019 Oct 29
(25) Gonzales-Garibay AS, et al, Effect of Ursolic Acid on Insulin Resistance and Hyperinsulinemia in Rats with Diet-Induced Obesity: Role of Adipokines Expression. J Med Food. 2020 Mar;23
(26)
Resveratrol has long been known as an natural anti-aging gene activator. The target of this activation is SIRT1. Research now indicates that another extract (ursolic acid) is even more powerful than resveratrol in the activation SIRT1. Furthermore, the extracts ursolic acid and rosmarinic acid promote anti-aging in other ways,, including preservation of the functioning of the hypothalamus (implicated as playing a significant role in the aging process), inhibiting fibrosis (amyloid and tau) and inhibiting NOX2 and NOX4.
URSOLIC ACID
ROSMARINIC ACID
HYPER LONGEVITY (Ursolic Acid | Rosmarinic Acid)
REFERENCES:
(1) Bakhtian N, et al. Mounting evidence validates Ursolic Acid directly activates SIRT1: A powerful STAC which mimic endogenous activator of SIRT1. Arch Biochem Biophys. 2018 Jul
(2) Kim K, et al. Role of hypothalamus in aging and its underlying cellular mechanisms. Mech. Ageing Dev. 2018. May.
(3) Bahrami SA, et al Ursolic acid regulates aging process through enhancing of metabolic sensor proteins level. Biomed Pharmacother, 2016 Aug
(4) Kamble SM, et al. In silico Evidence for Binding of Pentacyclic Triterpenoids to Keap1-Nrf2 Protein-Protein Binding Site. Comb Chem High Throughput Screen. 2017
(5) Wang F, et al. The Molecular Mechanism of Rosmarinic Acid Extending the Lifespan of Caenorhabditis elegans. Applied Mechanics and Materilals. 2011.
(6) Forte M, et al. The Pathophysiological Role of NOX2 in Hypertension and Organ Damage. High Blood Press. Cardiovasc Prev. 2016 Dec
(7) Revoltella S, et al. Identification of the NADPH Oxidase 4 Inhibiting Principle of Lycopus europaeus. Molecules. 2018 Mar.
(8) Ramazzotti M, et al, Mechanism for the inhibition of amyloid aggregation by small ligands.Biosci Rep. 2016 Sept.
(9) Shan Y, et al. Aging as a Precipitating Factor in Chronic Restraint Stress-Induced Tau Aggregation Pathology, and the Protective Effects of Rosmarinic Acid. J Alzheimers Dis. 2016
(10) Yui S, et al. Beneficial Effects of Lemon Balm Leaf Extract on In Vitro Glycation of Proteins, Arterial Stiffness, and Skin Elasticity in Healthy Adults. J Nutr Sci Vitaminol (Tokyo) 2017
(11) Jayanthy G, et al, Rosmarinic Acid Mediates Mitochondrial Biogenesis in Insulin Resistant Skeletal Muscle Through Activation of AMPK. J Cell Biochem. 2017 Jul