News

Oxidative Stress and Inflammation - Pathogenesis in Degeneration of the Retina

Neurodegenerative diseases of the retina are mostly attributable to oxidative stress and inflammation.(1)  Diseases of the retina target the retinal epithelial cells, and photoreceptors. Photoreceptors are the processing centers in the retina, and are the primary area of vision. The retina has the highest metabolic rate of any tissue in the body. Furthermore, the retina must endure oxidative stress from chronic exposure to light, which will damage the retina. In addition, retina degeneration is associated with inflammation. The result is that with age, the retina becomes damaged, and blindness is the end effect in older people.

 

AGE RELATED MACULAR DEGENERATION. Degeneration of retinal cells (photoreceptor and retinal pigment epitheilium (RPE) cells) by oxidative stress and inflammation is responsible for age-related macular degeneration (AMD).

  • PHOTORECEPTORS - Are comprised of rods and cones.  Are under constant threat of oxidative threats, including excessive stress from light, high oxygen requirements, All of which make photo receptors susceptible to degradation and death of the photo receptors.

(1) Oxidative Stress - NrFT2. Cellular Transcription Factor for Endogenous Antioxidant Protective Factors

  • CARNOSIC ACID

Carnosic Acid is an electrophilic antioxidant which crosses the blood brain barrier. Carnoisc acid is a potent activator of Nrf2, a transcription factor that causes the increased production of endogenous antioxidants. Additionally, carnoisc acid is unqiue in that it does not deplete endogenous levels of glutathionine, the key cellular antioxidant, unlike other antioxidants.(2) In a study of high intensity lighting on photooxidative damage of the retina, adding carnoisc acid to AREDS ingredients greatly increased protection of retina vs AREDS alone.(3)

  • LYCIUM BARBARIM (WOLFBERRY)

    Protects the eye and retina in multiple ways. First, lycium bararum protects the photreceptor cells from light-induced retina damage by activating Nrf2.(4)

    2) Inflammation - NLRP3 inflammasome activation is involed in the pathogenesis of AMD.

    • BLACK CURRANT / BILBERRY EXTRACT (C3G)

    C3G is considered the most important anthocyanin in maintaining health of the retina. Recently, research indicates that cyanidin-3-glucoside (C3G) has potent anti-inflammation properties and may inhibit  inflammasome damage to retinal epithelium cells.(5) C3G further reduces oxidative stress of the retina, and light induced retinal degeneration,  by activating Nrf2 endogenous levels.(6)

     

    VISION VITALITY (Carnosic Acid | Lycium Barbarum | C3G)

     

    REFERENCES:
    (1) Rohowetz RJ, et al, Reactive Oxygen Species-Mediated Damage of Retinal Neurons: Drug Development Targets for Therapies of Chronic Neurodegeneration of the Retina. Int J Mol Sci. 2018 Oct

    (2) Rezaie T, et al. Protective effect of carnosic acid, a pro-electrophilic compound, in models of oxidative stress and light-induced retinal degeneration. Invest Ophthalmol Vis Sci. 2012 Nov

    (3) Wong P, et al, Enhancing the efficacy of AREDS antioxidants in light-induced retinal degeneration.  Mol Vis. 2017 Oct

    (4)  Tang L, et al. Antioxidant effects of Lycium barbarum polysaccharides on photoreceptor degeneration in the light-exposed mouse retina. Biomed Pharmacother. 2018 Jul

    (5) Jin X, et al. Cyanidin-3-glucoside Alleviates 4-Hydroxyhexenal-Induced NLRP3 Inflammasome Activation via JNK-c-Jun/AP-1 Pathway in Human Retinal Pigment Epithelial Cells.  J Immunol Res. 2018

    (6) Wang Y, et al. Cyanidin-3-glucoside and its phenolic acid metabolites attenuate visible light-induced retinal degeneration in vivo via activation of Nrf2/HO-1 pathway and NF-κB suppression.  Mol Nutr Food Res. 2016 Jul