For years, it has been known that resveratrol is one of the most effective anti-aging compounds studied. Beneficial effects on lifespan have been demonstrated across many research organisms, including worms and flies. In 2003, resveratrol was identified as a molecule which could activate SIRT1, mimicking the life extending benefits shown by calorie restriction. Furthermore, resveratrol also activates the anti-aging Nrf2 pathway, and AMPK which enhances NAD+ availability. (1) Cellular NAD+ levels are linked to longevity.
In a new study, the silkworm was used to further illustrate the life extending effects of resveratrol via significant improvement of antioxidant activity.. Oxidation is a key factor is anti-aging and shortening of the lifespan.(2)
Resveratrol was shown to activate antioxidant function in the silkworm via increased activity of the GST enzyme, key in the antioxidant enzyme system.
RESVERATROL ACTIVATES the GST Antioxidant System via
This research further validates the beneficial life extending benefits of resveratrol.
PURPLE LONGEVITY (Resveratrol : Pterostilbene)
REFERENCES:
(1) Li Z, et al. Aging and age‐related diseases: from mechanisms to therapeutic strategies. Biogerontology. 2021 Jan
(2) Song J, et al. Resveratrol elongates the lifespan and improves antioxidant activity in the silkworm Bombyx mori. J Pharm Anal. 2021 Jun
Resveratrol has long been known as an natural anti-aging gene activator. The target of this activation is SIRT1. Research now indicates that another extract (ursolic acid) is even more powerful than resveratrol in the activation SIRT1. Furthermore, the extracts ursolic acid and rosmarinic acid promote anti-aging in other ways,, including preservation of the functioning of the hypothalamus (implicated as playing a significant role in the aging process), inhibiting fibrosis (amyloid and tau) and inhibiting NOX2 and NOX4.
URSOLIC ACID
ROSMARINIC ACID
HYPER LONGEVITY (Ursolic Acid | Rosmarinic Acid)
REFERENCES:
(1) Bakhtian N, et al. Mounting evidence validates Ursolic Acid directly activates SIRT1: A powerful STAC which mimic endogenous activator of SIRT1. Arch Biochem Biophys. 2018 Jul
(2) Kim K, et al. Role of hypothalamus in aging and its underlying cellular mechanisms. Mech. Ageing Dev. 2018. May.
(3) Bahrami SA, et al Ursolic acid regulates aging process through enhancing of metabolic sensor proteins level. Biomed Pharmacother, 2016 Aug
(4) Kamble SM, et al. In silico Evidence for Binding of Pentacyclic Triterpenoids to Keap1-Nrf2 Protein-Protein Binding Site. Comb Chem High Throughput Screen. 2017
(5) Wang F, et al. The Molecular Mechanism of Rosmarinic Acid Extending the Lifespan of Caenorhabditis elegans. Applied Mechanics and Materilals. 2011.
(6) Forte M, et al. The Pathophysiological Role of NOX2 in Hypertension and Organ Damage. High Blood Press. Cardiovasc Prev. 2016 Dec
(7) Revoltella S, et al. Identification of the NADPH Oxidase 4 Inhibiting Principle of Lycopus europaeus. Molecules. 2018 Mar.
(8) Ramazzotti M, et al, Mechanism for the inhibition of amyloid aggregation by small ligands.Biosci Rep. 2016 Sept.
(9) Shan Y, et al. Aging as a Precipitating Factor in Chronic Restraint Stress-Induced Tau Aggregation Pathology, and the Protective Effects of Rosmarinic Acid. J Alzheimers Dis. 2016
(10) Yui S, et al. Beneficial Effects of Lemon Balm Leaf Extract on In Vitro Glycation of Proteins, Arterial Stiffness, and Skin Elasticity in Healthy Adults. J Nutr Sci Vitaminol (Tokyo) 2017
(11) Jayanthy G, et al, Rosmarinic Acid Mediates Mitochondrial Biogenesis in Insulin Resistant Skeletal Muscle Through Activation of AMPK. J Cell Biochem. 2017 Jul